php -r '$_GET["key"]="value"; require_once("script.php");
Sunday, November 25, 2018
Friday, September 28, 2018
language generation in keras
https://machinelearningmastery.com/how-to-develop-a-word-level-neural-language-model-in-keras/
Saturday, September 15, 2018
Language to language translation
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa
Thursday, September 13, 2018
Word2vec visualization
link
https://labsblog.f-secure.com/2018/01/30/nlp-analysis-of-tweets-using-word2vec-and-t-sne/
Better one for skip-gram
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://labsblog.f-secure.com/2018/01/30/nlp-analysis-of-tweets-using-word2vec-and-t-sne/
Better one for skip-gram
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Wednesday, September 12, 2018
Clustering Evaluating Methodologies
Purity
Normalized Mutual InformationRand
Jaccard coefficient
Fowlkes and Mallows index
Dunn index
Silhouette Coefficient
Adjusted Rand index
Mutual Information based scores
Calinski-Harabaz Index
Homogeneity, completeness and V-measure
Fowlkes-Mallows scores
Clustering Evaluation
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
Thursday, September 6, 2018
Monday, August 27, 2018
How to Run Parallel Data Analysis in Python using Dask Dataframes
Here is the link
https://towardsdatascience.com/trying-out-dask-dataframes-in-python-for-fast-data-analysis-in-parallel-aa960c18a915
https://towardsdatascience.com/trying-out-dask-dataframes-in-python-for-fast-data-analysis-in-parallel-aa960c18a915
Wednesday, August 15, 2018
Python dataframe remove non ascii words
df.text.replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
text is the column name in dataframe df
Monday, May 21, 2018
Figures settings in matplotlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from matplotlib.ticker import NullFormatter
#reading the data
os.chdir('E:/backup folder/paper')
test_data = pd.read_csv('keygenerationtime.csv')
print(test_data['Users'])
Users= test_data['Users']
Time=test_data['Time']
N = len(Users)
x2 = np.arange(N)
print(N)
plt.plot(x2, Time,linewidth=2,color='black')
plt.xticks(x2, Users)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('Number of Users',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig3.png', dpi=200)
plt.show()
#----------------------------------------------
test_data = pd.read_csv('encryptiontime.csv')
print(test_data['File'])
File= test_data['File']
Time=test_data['Time']
N = len(File)
x2 = np.arange(N)
#print(N)
plt.bar(x2, Time,color='black',width=0.5)
plt.xticks(x2, File)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('File Size (KB)',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig4.png', dpi=200)
plt.show()
#--------------------------------------------
test_data = pd.read_csv('decryptiontime.csv')
print(test_data['File'])
File= test_data['File']
Time=test_data['Time']
N = len(File)
x2 = np.arange(N)
#print(N)
plt.bar(x2, Time,color='black',width=0.5)
plt.xticks(x2, File)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('File Size (KB)',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig5.png', dpi=200)
plt.show()
#------------------------------------------
test_data = pd.read_csv('turnaround.csv')
print(test_data)
File= test_data['File']
Ses_up=test_data['a']
up1=test_data['b']
up2=test_data['c']
Ses_down=test_data['d']
down1=test_data['e']
down2=test_data['f']
patterns = [ "/" , "\\" , "|" , "-" , "+" , "x", "o", "O", ".", "*" ]
width = 0.15
pos = list(range(len(Ses_up)))
fig, ax = plt.subplots(figsize=(5,5))
bar1=plt.bar(pos, Ses_up, width,
alpha=1,
color='black',
hatch="/", # this one defines the fill pattern
label=File[0])
plt.bar([p + width for p in pos], up1, width,
alpha=0.5,
color='w',
hatch="\\",
label=File[1])
plt.bar([p + width*2 for p in pos], up2, width,
alpha=0.5,
color='k',
hatch='-',
label=File[2])
plt.bar([p + width*3 for p in pos], Ses_down, width,
alpha=0.7,
color='black',hatch="//",
label=File[3])
plt.bar([p + width*4 for p in pos], down1, width,
alpha=0.5,
color='w',
hatch="...",
label=File[4])
plt.bar([p + width*5 for p in pos], down2, width,
alpha=0.5,
color='white',
hatch="///",
label=File[5])
ax.set_ylabel('Time (secs)',fontsize=14)
ax.set_xlabel('File Size (KB) ',fontsize=14)
#ax.set_title('Grouped bar plot')
ax.set_xticks([p + 1.5 * width for p in pos])
ax.set_xticklabels(File)
plt.legend(['SeSPHR T-up', '[14] T-up', '[27] T-up', 'SeSPHR T-down', '[14] T-down', '[27] T-down'], loc='upper left')
fig.savefig('Fig6.png', dpi=200)
plt.show()
import pandas as pd
import matplotlib.pyplot as plt
import os
from matplotlib.ticker import NullFormatter
#reading the data
os.chdir('E:/backup folder/paper')
test_data = pd.read_csv('keygenerationtime.csv')
print(test_data['Users'])
Users= test_data['Users']
Time=test_data['Time']
N = len(Users)
x2 = np.arange(N)
print(N)
plt.plot(x2, Time,linewidth=2,color='black')
plt.xticks(x2, Users)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('Number of Users',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig3.png', dpi=200)
plt.show()
#----------------------------------------------
test_data = pd.read_csv('encryptiontime.csv')
print(test_data['File'])
File= test_data['File']
Time=test_data['Time']
N = len(File)
x2 = np.arange(N)
#print(N)
plt.bar(x2, Time,color='black',width=0.5)
plt.xticks(x2, File)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('File Size (KB)',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig4.png', dpi=200)
plt.show()
#--------------------------------------------
test_data = pd.read_csv('decryptiontime.csv')
print(test_data['File'])
File= test_data['File']
Time=test_data['Time']
N = len(File)
x2 = np.arange(N)
#print(N)
plt.bar(x2, Time,color='black',width=0.5)
plt.xticks(x2, File)
plt.ylabel('Time(secs)',fontsize=14)
plt.xlabel('File Size (KB)',fontsize=14)
plt.subplots_adjust(bottom=0.2)
fig = plt.gcf()
fig.set_size_inches(5, 5)
fig.savefig('Fig5.png', dpi=200)
plt.show()
#------------------------------------------
test_data = pd.read_csv('turnaround.csv')
print(test_data)
File= test_data['File']
Ses_up=test_data['a']
up1=test_data['b']
up2=test_data['c']
Ses_down=test_data['d']
down1=test_data['e']
down2=test_data['f']
patterns = [ "/" , "\\" , "|" , "-" , "+" , "x", "o", "O", ".", "*" ]
width = 0.15
pos = list(range(len(Ses_up)))
fig, ax = plt.subplots(figsize=(5,5))
bar1=plt.bar(pos, Ses_up, width,
alpha=1,
color='black',
hatch="/", # this one defines the fill pattern
label=File[0])
plt.bar([p + width for p in pos], up1, width,
alpha=0.5,
color='w',
hatch="\\",
label=File[1])
plt.bar([p + width*2 for p in pos], up2, width,
alpha=0.5,
color='k',
hatch='-',
label=File[2])
plt.bar([p + width*3 for p in pos], Ses_down, width,
alpha=0.7,
color='black',hatch="//",
label=File[3])
plt.bar([p + width*4 for p in pos], down1, width,
alpha=0.5,
color='w',
hatch="...",
label=File[4])
plt.bar([p + width*5 for p in pos], down2, width,
alpha=0.5,
color='white',
hatch="///",
label=File[5])
ax.set_ylabel('Time (secs)',fontsize=14)
ax.set_xlabel('File Size (KB) ',fontsize=14)
#ax.set_title('Grouped bar plot')
ax.set_xticks([p + 1.5 * width for p in pos])
ax.set_xticklabels(File)
plt.legend(['SeSPHR T-up', '[14] T-up', '[27] T-up', 'SeSPHR T-down', '[14] T-down', '[27] T-down'], loc='upper left')
fig.savefig('Fig6.png', dpi=200)
plt.show()
Wednesday, April 4, 2018
Softmax vs Sigmoid function usage in last dense layer
If we require that sum of probabilities of all the classes should be equal to 1 then we use softmax but if we require separate and individual probabilities, such as in the case of multi-label classification we use sigmoid
https://www.depends-on-the-definition.com/classifying-genres-of-movies-by-looking-at-the-poster-a-neural-approach/
https://www.depends-on-the-definition.com/classifying-genres-of-movies-by-looking-at-the-poster-a-neural-approach/
Monday, January 15, 2018
valueError Input 0 is incompatible with layer flatten_1
Solution
Add return_sequences=True in LSTM layer
Add return_sequences=True in LSTM layer
Subscribe to:
Comments (Atom)